科研队伍
您现在所在的位置: 首页 > 科研队伍 > 按职称 > 教授
李峰
职  称:
教授
专  业:
物理化学
研究方向:
有机光电材料与器件,超分子光电子学
主  页:
http://supramol.jlu.edu.cn/people/lifeng/
联系方式
邮 箱:
lifeng01@jlu.edu.cn
办公室:
吉林大学无机超分子楼B100室
实验室:
吉林大学无机超分子楼B301室、 B205室
个人简历
李峰 教授1994/09-1998/07在吉林大学电子科学与工程学院进行本科学习,获得微电子学士学位。1998/09-2003/07年在吉林大学集成光电子国家重点实验室攻读博士学位,获得微电子学与固体电子学博士学位。2003/09-2004/12在以色列理工学院Tessler教授课题组进行博士后研究。2005年2月回到吉林大学工作,被聘为副教授,2008年10月晋升为教授,2011年聘为博士生导师。
研究兴趣

(1)基于新的发光原理的有机发光材料与器件:比如由我们首次提出并实现的双重态激子发光的有机电致发光器件(OLEDs),开发与之对应的中性共轭自由基发光材料。

(2)由分子间弱相互作用诱导的有机共轭分子的自组装过程,并研究自组装的纳米结构的光电性质。

(3)有机半导体材料与器件所特有的磁场效应,并利用磁场效应作为工具,研究有机光电器件内的物理过程。


代表性论文

[1] F. Li* et al., Efficient radical-based light-emitting diodes with doublet emission, Nature, 563, 536-540 (2018).​
[2] F. Li* et al., Radical-based Organic Light-Emitting Diodes with maximum external quantum efficiency of 10.6%, J. Phys. Chem. Lett., 9, 6644-6648 (2018).
[3] F. Li* et al., A pure red luminescent beta-carboline-substituted biphenylmethyl radical: photophysics, stability and OLEDs, J. Mater. Chem. C, 6, 11248-11254 (2018).
[4] F. Li* et al., A Stable Room-Temperature Luminescent Biphenylmethyl Radical, Angew. Chem., Int. Ed., 57, 2869-2873 (2018), hot paper.
[5] F. Li* et al., Efficient deep blue fluorescent OLEDs with ultra-low efficiency roll-off based on 4H-1,2,4-triazole, Dyes Pigm., 153, 10-17 (2018).
[6] F. Li* et al., Effects of substituents on luminescent efficiency of stable triaryl methyl radicals, Phys. Chem. Chem. Phys., 20, 18657-18662 (2018).
[7] F. Li* et al., Doublet-Triplet Energy Transfer-Dominated Photon Upconversion, J. Phys. Chem. Lett., 8, 5865-5870 (2017).
[8] F. Li* et al., Multicarbazolyl Substituted TTM Radicals: Red-Shift of Fluorescence Emission with Enhanced Luminescence Efficiency, Mater. Chem. Front., 1, 2132-2135 (2017).
[9] F. Li* et al., A Pure Red Organic Light-Emitting Diode Based on a Luminescent Derivative of Tris(2,4,6-trichlorotriphenyl)methyl Radical, Dyes Pigm., 139, 644-650 (2017).
[10] F. Li* et al., Novel Luminescent Benzimidazole-Substituent Tris(2,4,6-trichlorophenyl) methyl Radicals: Photophysics, Stability, and Highly Efficient Red-Orange Electroluminescence, Chem. Mater., 29, 6733-6739 (2017).
[11] F. Li* et al., Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π‑Radical, ACS Appl. Mater. Interfaces, 8, 35472-35478 (2016).
[12] F. Li* et al., Triplet-Polaron-Interaction-Induced Upconversion from Triplet to Singlet: a Possible Way to Obtain Highly Efficient OLEDs., Adv. Mater., 28, 4760-4746 (2016).
[13] F. Li* et al., Asymmetrically twisted anthracene derivatives as highly efficient deep-blue emitters for organic light-emitting diodes., J. Mater. Chem. C, 3, 9942-9947 (2015).
[14] F. Li* et al., Organic Light-Emitting Diodes Using a Neutral pi Radical as Emitter: The Emission from a Doublet., Angew. Chem., Int. Ed., 54, 7091-7095 (2015), inside cover paper and hot paper.
[15] F. Li* et al., Delayed Fluorescence in a Solution-Processable Pure Red Molecular Organic Emitter Based on Dithienylbenzothiadiazole: A Joint Optical, Electroluminescence, and Magnetoelectroluminescence Study., ACS Appl. Mater. Interfaces, 7, 2972-2978 (2015).
[16] F. Li* et al., Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet-triplet annihilation., J. Mater. Chem. C, 3, 6970-6978 (2015), cover paper.
[17] F. Li* et al., Charge-transfer-featured materials-promising hosts for fabrication of efficient OLEDs through triplet harvesting via triplet fusion., Chem. Commun., 50, 7586-7589 (2014), cover paper.
[18] F. Li* et al., Lending Triarylphosphine Oxide to Phenanthroline: a Facile Approach to High-Performance Organic Small-Molecule Cathode Interfacial Material for Organic Photovoltaics utilizing Air-Stable Cathodes., Adv. Funct. Mater., 24, 6540-6547 (2014).
[19] F. Li* et al., Studying the influence of triplet deactivation on the singlet-triplet inter-conversion in intra-molecular charge-transfer fluorescence-based OLEDs by magneto-electroluminescence. J. Mater. Chem. C, 2, 6264-6268 (2014), inside cover paper.
[20] F. Li* et al., Magneto-Electroluminescence as a Tool to Discern the Origin of Delayed Fluorescence: Reverse Intersystem Crossing or Triplet-Triplet Annihilation?, Adv. Opt. Mater., 2, 142-148 (2014).
[21] F. Li* et al., Evidence of the Reverse Intersystem Crossing in Intra-Molecular Charge-Transfer Fluorescence-Based Organic Light-Emitting Devices Through Magneto-Electroluminescence Measurements., Adv. Opt. Mater., 1, 362-366 (2013).
[22] F. Li* et al., Time-resolved spin-dependent processes in magnetic field effects in organic semiconductors., J. Appl. Phys., 112, 114512 (2012).
[23] F. Li* et al., Direct measurement of the magnetic field effects on carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum based light-emitting diodes., Appl. Phys. Lett., 97, 073301 (2010).